Поиск по Электронному каталогу


 

База данных: Электронная библиотека

Страница 1, Результатов: 7

Отмеченные записи: 0

Article
С 44

Скопинцев, Б.А.
    Органическое вещество в морской воде северной части Кольского залива = Organic matter in sea-water in the Northern part of Kola Fjord / Скопинцев, Б.А. // "Персей": Труды ВНИРО. - М.: Издательство ВНИРО, 1937, - Т. 4.- Вып. 1. - С. 155-168/"Persey": Transactions VNIRO. - M: VNIRO Publishing, 1937, - Vol. 4.- № 1. - P. 155-168. - 1937

~РУБ Article

Рубрики: Химия/Chemistry

   Баренцово море/Barents Sea


   Расчеты/Calculations


   Биология/Biology


   Органика/Organic


   Кольский залив/Kola Fjord


Аннотация: Метод учета БПК в применении к морской воде нередко дает значительные отклонения при параллельных определениях; однако, исходя из возможности получения этим методом ценного материала в отношении динамики биогенных элементов, желательна его разработка. Остальные два химических метода дают уже более устойчивые результаты. Исследования показали, что учет разложившейся Н2О2 не всегда может являться косвенным показателем содержания органического вещества в морской воде, так как в ряде случаев пробы с близкой величиной окисляемости, но взятые с разных горизонтов, не одинаково разлагали Н2О2. Определения окисляемости показали, что окисляемость убывает по вертикали, но лишь до известного предела, и над дном она снова возрастает, что, вероятно, обусловлено влиянием донных отложений. Сопоставление полученных здесь данных с нашими данными по Баренцову и Карскому морям подтверждает вывод о большей величине окисляемости в прибрежных водах. Данные по биохимическому потреблению кислорода также показали, что для поверхностных горизонтов характерна более высокая величина БПК. Можно отметить, что окисляемость и БПК тем меньше, чем дальше расположен пункт от берегов и населенных мест и что разложение перекиси водорода глубинными слоями в 3 пунктах идет с почти одинаковой скоростью, тогда как для поверхностных слоев всех 4 пунктов это не имело места. Опыты по разделению органического вещества на истинно-растворенное и суспензированное + коллоидальное произведены двумя методами: обработкой морской воды раствором Al2(SO4)3 с образованием осадка Al(OH)3 и фильтрацией через "бактериологический" ультрафильтр". Первый прием дает снижение окисляемости на 16-20%; применение указанных ультрафильтров, не подвергнутых специальной предварительной обработке (промыванию), приводит к увеличению окисляемости в фильтрате, особенно в случае пользования ультрафильтром с подкладкой из обычного фильтра. Пропускание значительных количеств морской воды через один ультрафильтр приводит к постепенному снижению окисляемости в исследованных фракциях./In appreciating the above methods we have to say that the biochemical oxygen demand method in its present state as applied to sea water has often shown considerable fluctuations in paralell determinations; however considering the valuable material, that may be afforded by the said method, in way of dynamics of biochemical elements its elaboration is advisable. The other two chemical methods are more ready applied. Investigation has shown, that the estimation of decomposed H2O2 is not always an indirect index of organic matter content in sea water, in a number of cases waters with similar values of oxygen consumed, but taken from different horizons responded differently to the H2O2. Determinations of oxygen consumed have shown that the latter decreases in the vertical direction, yet but to a definite limit; just above the bottom it rises again, this being probably due to the influence of sea bottom sediments. The comparison of these data with our data for the Barents and Kara Seas confirm the conclusion of greater amount of oxygen consumed in shore waters. Data on biochemical demand of oxygen have shown, too, that for surface horizons a greater biochemical demand of oxygen is characteristic. The oxygen consumed and biochemical oxygen demand is the greater the further the given locality is from the shore and populated regions-smallest values occurring off Sedlovatyj Island and in Olenja Guba, then rising againg in Polarnaja Harbour and reaching its maximum in the littoral. Rate of hydrogen peroxyde decomposition in deep layers and in all the three localities is approximately the same: whereas in the surface layers of all four localities the rate varies in both directions. Expriments have been made on separating organic matter into strictly dissolved and suspended plus colloidal one; these experiments were followed in two ways: treatment of sea water with Al2(SO4)3 (precipitate Al(OH)3 formation) and filtration through "bacteriological" ultra-filter. The first way gives a decrease of 16-20 % in oxygen consumed: the application of the said ultra-filters without a previous special preparation of the latter (washing) has brought forth increase in the filtrate of oxygen consumed, particularly in case when an ultra-filter lined with an ordinary filter was used. Filtration of considerable quantities of sea water through a single ultra-filter leads to gradual decrease of oxygen consumed in examined fractions.

Скопинцев, Б.А. Органическое вещество в морской воде северной части Кольского залива [Электронный ресурс] / Скопинцев, Б.А. // "Персей": Труды ВНИРО. - М.: Издательство ВНИРО, 1937, - Т. 4.- Вып. 1. - С. 155-168/"Persey": Transactions VNIRO. - M: VNIRO Publishing, 1937, - Vol. 4.- № 1. - P. 155-168 : Изд-во ВНИРО/VNIRO Publishing, 1937

1.

Скопинцев, Б.А. Органическое вещество в морской воде северной части Кольского залива [Электронный ресурс] / Скопинцев, Б.А. // "Персей": Труды ВНИРО. - М.: Издательство ВНИРО, 1937, - Т. 4.- Вып. 1. - С. 155-168/"Persey": Transactions VNIRO. - M: VNIRO Publishing, 1937, - Vol. 4.- № 1. - P. 155-168 : Изд-во ВНИРО/VNIRO Publishing, 1937


Article
С 44

Скопинцев, Б.А.
    Органическое вещество в морской воде северной части Кольского залива = Organic matter in sea-water in the Northern part of Kola Fjord / Скопинцев, Б.А. // "Персей": Труды ВНИРО. - М.: Издательство ВНИРО, 1937, - Т. 4.- Вып. 1. - С. 155-168/"Persey": Transactions VNIRO. - M: VNIRO Publishing, 1937, - Vol. 4.- № 1. - P. 155-168. - 1937

~РУБ Article

Рубрики: Химия/Chemistry

   Баренцово море/Barents Sea


   Расчеты/Calculations


   Биология/Biology


   Органика/Organic


   Кольский залив/Kola Fjord


Аннотация: Метод учета БПК в применении к морской воде нередко дает значительные отклонения при параллельных определениях; однако, исходя из возможности получения этим методом ценного материала в отношении динамики биогенных элементов, желательна его разработка. Остальные два химических метода дают уже более устойчивые результаты. Исследования показали, что учет разложившейся Н2О2 не всегда может являться косвенным показателем содержания органического вещества в морской воде, так как в ряде случаев пробы с близкой величиной окисляемости, но взятые с разных горизонтов, не одинаково разлагали Н2О2. Определения окисляемости показали, что окисляемость убывает по вертикали, но лишь до известного предела, и над дном она снова возрастает, что, вероятно, обусловлено влиянием донных отложений. Сопоставление полученных здесь данных с нашими данными по Баренцову и Карскому морям подтверждает вывод о большей величине окисляемости в прибрежных водах. Данные по биохимическому потреблению кислорода также показали, что для поверхностных горизонтов характерна более высокая величина БПК. Можно отметить, что окисляемость и БПК тем меньше, чем дальше расположен пункт от берегов и населенных мест и что разложение перекиси водорода глубинными слоями в 3 пунктах идет с почти одинаковой скоростью, тогда как для поверхностных слоев всех 4 пунктов это не имело места. Опыты по разделению органического вещества на истинно-растворенное и суспензированное + коллоидальное произведены двумя методами: обработкой морской воды раствором Al2(SO4)3 с образованием осадка Al(OH)3 и фильтрацией через "бактериологический" ультрафильтр". Первый прием дает снижение окисляемости на 16-20%; применение указанных ультрафильтров, не подвергнутых специальной предварительной обработке (промыванию), приводит к увеличению окисляемости в фильтрате, особенно в случае пользования ультрафильтром с подкладкой из обычного фильтра. Пропускание значительных количеств морской воды через один ультрафильтр приводит к постепенному снижению окисляемости в исследованных фракциях./In appreciating the above methods we have to say that the biochemical oxygen demand method in its present state as applied to sea water has often shown considerable fluctuations in paralell determinations; however considering the valuable material, that may be afforded by the said method, in way of dynamics of biochemical elements its elaboration is advisable. The other two chemical methods are more ready applied. Investigation has shown, that the estimation of decomposed H2O2 is not always an indirect index of organic matter content in sea water, in a number of cases waters with similar values of oxygen consumed, but taken from different horizons responded differently to the H2O2. Determinations of oxygen consumed have shown that the latter decreases in the vertical direction, yet but to a definite limit; just above the bottom it rises again, this being probably due to the influence of sea bottom sediments. The comparison of these data with our data for the Barents and Kara Seas confirm the conclusion of greater amount of oxygen consumed in shore waters. Data on biochemical demand of oxygen have shown, too, that for surface horizons a greater biochemical demand of oxygen is characteristic. The oxygen consumed and biochemical oxygen demand is the greater the further the given locality is from the shore and populated regions-smallest values occurring off Sedlovatyj Island and in Olenja Guba, then rising againg in Polarnaja Harbour and reaching its maximum in the littoral. Rate of hydrogen peroxyde decomposition in deep layers and in all the three localities is approximately the same: whereas in the surface layers of all four localities the rate varies in both directions. Expriments have been made on separating organic matter into strictly dissolved and suspended plus colloidal one; these experiments were followed in two ways: treatment of sea water with Al2(SO4)3 (precipitate Al(OH)3 formation) and filtration through "bacteriological" ultra-filter. The first way gives a decrease of 16-20 % in oxygen consumed: the application of the said ultra-filters without a previous special preparation of the latter (washing) has brought forth increase in the filtrate of oxygen consumed, particularly in case when an ultra-filter lined with an ordinary filter was used. Filtration of considerable quantities of sea water through a single ultra-filter leads to gradual decrease of oxygen consumed in examined fractions.

Article
С 44

Скопинцев, Б.А.
    Органическое вещество в водах Баренцова и Карского морей (по данным 40-го рейса э/с "Персей" в августе-октябре 1932 г.) = Organic matter in the Barents and Kara Seas waters (data afforded by the 40th cruise of r/s. "Persey" August-October, 1932) / Скопинцев, Б.А. // "Персей": Труды ВНИРО. - М.: Издательство ВНИРО, 1937, - Т. 4.- Вып. 1. - С. 149-154/"Persey": Transactions VNIRO. - M: VNIRO Publishing, 1937, - Vol. 4.- № 1. - P. 149-154. - 1937

~РУБ Article

Рубрики: Органика/Organic

   Баренцево море/Barents Sea


   Карское море/Kara Sea


   Расчеты/Calculations


   Химия/Chemistry


   Окисление/Oxygen


Аннотация: Проведено определение окисляемости в водах Баренцова и Карского морей во время 40-го рейса э/с "Персей" (август-октябрь 1932 г.). Применялся нейтральный метод окисляемости в нейтральной среде. Путем помножения на коэффициент, найденный опытным путем (2,5), средние данные "нейтральной окисляемости" пересчитаны на "щелочную окисляемость". Полученные данные показали, что наибольшая величина окисляемости наблюдается в прибрежных водах - в водах с малой соленостью; поверхностные воды характеризуются также большой величиной окисляемости, которая с глубиной убывает. Окисляемость вод Карского моря больше окисляемости Баренцова моря (при близких в ряде случаев соленостях). Окисляемость вод Карского моря больше окисляемости Баренцова моря (при близких в ряде случаев соленостях). В виде предварительного вывода можно сказать, что относительная величина окисляемости свойственна: морским водам с малой величиной солености, обусловленной влиянием мощного берегового стока в условиях полузамкнутого бассейна (Белое море); прибрежным морским водам (во всех морях); водам в открытых частях моря с высокой соленостью, у которых в то же время поверхностный слой характеризуется значительным опреснением: влияние рек, тающих масс льда и т.д. (Карское море). Этот вывод требует подтверждения на более значительном материале и относится к водам северных морей./A determination of oxygen consumed in waters of the Barents and Kara Seas was carried out in the course of the 40th cruise of research ship "Persey" (August-October 1932). The neutral method for determination of oxygen consumed was used. Average data for oxygen consumed in neutral medium were recounted for oxygen consumed in alkaline medium by way of multiplication by a coefficient obtained in an empirical way (2,5). The data obtained have shown, that the greatest value for oxygen consumed occurs in coastal waters of small degree of salinity; the surface waters, too, are characterized by greater values of oxygen consumed, these values decreasing with depth. The value of oxygen consumed in the Kara Sea waters is greater than the same in the Barents Sea, degree of salinity being at the same time very similar in a number of cases. In way of preliminary conclusion in may be said shat the relasively great value for oxygen consumed is to be found in: sea waters of small degree of salinity due to mighty coastal inflow in conditions of a semi-closed basin (White Sea); coastal sea waters (in all seas); waters of open parts of the sed with high degree of salinity, the upper layer, however being strongly diluted (influence of rivers, melting of ice etc, (the Kara Sea). We stress once more that she above conclusion is but a preliminary one and wants confirmation by the study of more material relating to waters of the northern seas.

Скопинцев, Б.А. Органическое вещество в водах Баренцова и Карского морей (по данным 40-го рейса э/с "Персей" в августе-октябре 1932 г.) [Электронный ресурс] / Скопинцев, Б.А. // "Персей": Труды ВНИРО. - М.: Издательство ВНИРО, 1937, - Т. 4.- Вып. 1. - С. 149-154/"Persey": Transactions VNIRO. - M: VNIRO Publishing, 1937, - Vol. 4.- № 1. - P. 149-154 : Изд-во ВНИРО/VNIRO Publishing, 1937

2.

Скопинцев, Б.А. Органическое вещество в водах Баренцова и Карского морей (по данным 40-го рейса э/с "Персей" в августе-октябре 1932 г.) [Электронный ресурс] / Скопинцев, Б.А. // "Персей": Труды ВНИРО. - М.: Издательство ВНИРО, 1937, - Т. 4.- Вып. 1. - С. 149-154/"Persey": Transactions VNIRO. - M: VNIRO Publishing, 1937, - Vol. 4.- № 1. - P. 149-154 : Изд-во ВНИРО/VNIRO Publishing, 1937


Article
С 44

Скопинцев, Б.А.
    Органическое вещество в водах Баренцова и Карского морей (по данным 40-го рейса э/с "Персей" в августе-октябре 1932 г.) = Organic matter in the Barents and Kara Seas waters (data afforded by the 40th cruise of r/s. "Persey" August-October, 1932) / Скопинцев, Б.А. // "Персей": Труды ВНИРО. - М.: Издательство ВНИРО, 1937, - Т. 4.- Вып. 1. - С. 149-154/"Persey": Transactions VNIRO. - M: VNIRO Publishing, 1937, - Vol. 4.- № 1. - P. 149-154. - 1937

~РУБ Article

Рубрики: Органика/Organic

   Баренцево море/Barents Sea


   Карское море/Kara Sea


   Расчеты/Calculations


   Химия/Chemistry


   Окисление/Oxygen


Аннотация: Проведено определение окисляемости в водах Баренцова и Карского морей во время 40-го рейса э/с "Персей" (август-октябрь 1932 г.). Применялся нейтральный метод окисляемости в нейтральной среде. Путем помножения на коэффициент, найденный опытным путем (2,5), средние данные "нейтральной окисляемости" пересчитаны на "щелочную окисляемость". Полученные данные показали, что наибольшая величина окисляемости наблюдается в прибрежных водах - в водах с малой соленостью; поверхностные воды характеризуются также большой величиной окисляемости, которая с глубиной убывает. Окисляемость вод Карского моря больше окисляемости Баренцова моря (при близких в ряде случаев соленостях). Окисляемость вод Карского моря больше окисляемости Баренцова моря (при близких в ряде случаев соленостях). В виде предварительного вывода можно сказать, что относительная величина окисляемости свойственна: морским водам с малой величиной солености, обусловленной влиянием мощного берегового стока в условиях полузамкнутого бассейна (Белое море); прибрежным морским водам (во всех морях); водам в открытых частях моря с высокой соленостью, у которых в то же время поверхностный слой характеризуется значительным опреснением: влияние рек, тающих масс льда и т.д. (Карское море). Этот вывод требует подтверждения на более значительном материале и относится к водам северных морей./A determination of oxygen consumed in waters of the Barents and Kara Seas was carried out in the course of the 40th cruise of research ship "Persey" (August-October 1932). The neutral method for determination of oxygen consumed was used. Average data for oxygen consumed in neutral medium were recounted for oxygen consumed in alkaline medium by way of multiplication by a coefficient obtained in an empirical way (2,5). The data obtained have shown, that the greatest value for oxygen consumed occurs in coastal waters of small degree of salinity; the surface waters, too, are characterized by greater values of oxygen consumed, these values decreasing with depth. The value of oxygen consumed in the Kara Sea waters is greater than the same in the Barents Sea, degree of salinity being at the same time very similar in a number of cases. In way of preliminary conclusion in may be said shat the relasively great value for oxygen consumed is to be found in: sea waters of small degree of salinity due to mighty coastal inflow in conditions of a semi-closed basin (White Sea); coastal sea waters (in all seas); waters of open parts of the sed with high degree of salinity, the upper layer, however being strongly diluted (influence of rivers, melting of ice etc, (the Kara Sea). We stress once more that she above conclusion is but a preliminary one and wants confirmation by the study of more material relating to waters of the northern seas.

Article
В 49

Виноградова, Е.Г.
    Гидрохимический режим Азовского моря в 1951-1953 гг. / Виноградова, Е.Г. // Реконструкция рыбного хозяйства Азовского моря: Труды ВНИРО. - М.: Издательство "Пищепромиздат", 1955, - Т. 31. - Вып. 1. - С. 62-79 (392 с.). - 1955

~РУБ Article

Рубрики: Гидрохимия

   Азовское море


   Соленость


   Кислород


   Температура


   Химия


Аннотация: Различие в вертикальном распределении температуры в разные годы вызывается преимущественно ветровым режимом. Наиболее резко выраженная температурная стратификация наблюдалась в июле и августе 1951 г. В Азовском море, и особенно в Таганрогском заливе, соленость сильно колеблется в зависимости от направления течений, от величины речного стока и от направления и силы ветра. В 1949 и 1950 гг. при значительном уменьшении стока Дона соленость воды Азовского моря увеличилась. Содержание растворенного кислорода в воде Азовского моря весьма велико. Весной в большей части моря отмечено пересыщение воды кислородом во всей толще, доходящее до 130%. В Азовском море окисляемость (от 2-3 мг О2/л) воды значительно выше, чем в Каспийском (1,14-2,10 мг О2/л) и Аральском (0,9-0,7 мг О2/л) морях. Большая окисляемость в Азовском море определяется высокой продукцией фитопланктона. Содержание кремнекислоты в воде Азовского моря резко меняется по сезонам. Весной, во время цветения диатомовых, наблюдается уменьшение содержания от 360 до 600 мг Si/м3, летом содержание ее увеличивается до 1000 мг Si/м3. Сезонные колебания содержания фосфатного фосфора в Азовском море выражены весьма ясно. Зимой, при замедленной жизнедеятельности фитопланктона содержание фосфатов увеличивается, а весной в большинстве районов моря падает иногда до аналитического нуля. Содержание аммонийного азота в воде Азовского моря весьма значительно, причем летом (в среднем 300 мг N/м3) выше, чем весной (в среднем 90 мг N/м3). Нитраты и нитриты в сравнительно небольших количествах были обнаружены только весной (апрель) 1951 и 1953 гг., а в 1952 г. они не отмечены.

Виноградова, Е.Г. Гидрохимический режим Азовского моря в 1951-1953 гг. [Электронный ресурс] / Виноградова, Е.Г. // Реконструкция рыбного хозяйства Азовского моря: Труды ВНИРО. - М.: Издательство "Пищепромиздат", 1955, - Т. 31. - Вып. 1. - С. 62-79 (392 с.) : Изд-во "Пищепромиздат", 1955

3.

Виноградова, Е.Г. Гидрохимический режим Азовского моря в 1951-1953 гг. [Электронный ресурс] / Виноградова, Е.Г. // Реконструкция рыбного хозяйства Азовского моря: Труды ВНИРО. - М.: Издательство "Пищепромиздат", 1955, - Т. 31. - Вып. 1. - С. 62-79 (392 с.) : Изд-во "Пищепромиздат", 1955


Article
В 49

Виноградова, Е.Г.
    Гидрохимический режим Азовского моря в 1951-1953 гг. / Виноградова, Е.Г. // Реконструкция рыбного хозяйства Азовского моря: Труды ВНИРО. - М.: Издательство "Пищепромиздат", 1955, - Т. 31. - Вып. 1. - С. 62-79 (392 с.). - 1955

~РУБ Article

Рубрики: Гидрохимия

   Азовское море


   Соленость


   Кислород


   Температура


   Химия


Аннотация: Различие в вертикальном распределении температуры в разные годы вызывается преимущественно ветровым режимом. Наиболее резко выраженная температурная стратификация наблюдалась в июле и августе 1951 г. В Азовском море, и особенно в Таганрогском заливе, соленость сильно колеблется в зависимости от направления течений, от величины речного стока и от направления и силы ветра. В 1949 и 1950 гг. при значительном уменьшении стока Дона соленость воды Азовского моря увеличилась. Содержание растворенного кислорода в воде Азовского моря весьма велико. Весной в большей части моря отмечено пересыщение воды кислородом во всей толще, доходящее до 130%. В Азовском море окисляемость (от 2-3 мг О2/л) воды значительно выше, чем в Каспийском (1,14-2,10 мг О2/л) и Аральском (0,9-0,7 мг О2/л) морях. Большая окисляемость в Азовском море определяется высокой продукцией фитопланктона. Содержание кремнекислоты в воде Азовского моря резко меняется по сезонам. Весной, во время цветения диатомовых, наблюдается уменьшение содержания от 360 до 600 мг Si/м3, летом содержание ее увеличивается до 1000 мг Si/м3. Сезонные колебания содержания фосфатного фосфора в Азовском море выражены весьма ясно. Зимой, при замедленной жизнедеятельности фитопланктона содержание фосфатов увеличивается, а весной в большинстве районов моря падает иногда до аналитического нуля. Содержание аммонийного азота в воде Азовского моря весьма значительно, причем летом (в среднем 300 мг N/м3) выше, чем весной (в среднем 90 мг N/м3). Нитраты и нитриты в сравнительно небольших количествах были обнаружены только весной (апрель) 1951 и 1953 гг., а в 1952 г. они не отмечены.

Article
Г 70

Горшкова, Т.И.
    Химический состав грунтовых растворов Азовского моря и Таганрогского залива / Горшкова, Т.И. // Реконструкция рыбного хозяйства Азовского моря: Труды ВНИРО. - М.: Издательство "Пищепромиздат", 1955, - Т. 31. - Вып. 1. - С. 123-144 (392 с.). - 1955

~РУБ Article

Рубрики: Азовское море

   Каспийское море


   Химия


   Грунты


   Химия


   Таганрогский залив


Аннотация: Грунтовые растворы содержат гораздо больше биогенных элементов, чем придонная вода. Изучение грунтового раствора позволяет вскрыть историю моря (например, постепенное осолонение Азовского моря за последнее столетие). Влажность грунтов Азовского моря является наибольшей в мягких осадках, причем толщина верхнего, более жидкого, слоя меняется в зависимости от ветрового режима. Соленость грунтового раствора верхнего слоя осадков изменяется в зависимости от изменения солености придонной воды, что сильнее всего проявляется во время таяния льда, во время паводков и при сгонно-нагонных ветрах. По изменению солености грунтовых растворов вглубь осадков можно заключить, что за последнее столетие происходит осолонение Азовского моря и Таганрогского залива. рН грунтового раствора при штормовой погоде достигает высоких значений, при штилевой погоде и при малых количествах кислорода резко падает. Количество фосфатов в грунтовом растворе верхнего слоя резко меняется в различные сезоны: весной количество минерального фосфора доходит до 0, в силу того, что запасы фосфатов прошлого лета во время циркуляции вод успели уже в значительной части перейти в толщу воды. В приустьевых пространствах количество фосфора грунтового раствора зависит от твердого и жидкого речного стока. Количество фосфора в грунтовом растворе нижних слоев осадков постепенно увеличивается за счет меньшей пористости осадков и накопления продуктов минерализации органического вещества. Сезонные изменения кремния проявляются значительно слабее, чем для фосфора, вследствие того, что силикатный материал осадков сам является причиной накопления кремния в грунтовом растворе. Регенерация минеральных азотистых соединений в грунтовых растворах доходит только до стадии аммиака, так как восстановительная среда препятствует нитрификации, поэтому нитриты и нитраты обнаружены очень редко и в очень незначительных количествах. Щелочность грунтовых растворов осадков Таганрогского залива увеличивается от кутовой части залива к Азовскому морю в связи с увеличением фракции 0,01 мм. Окисляемость грунтовых растворов верхнего окисленного слоя осадков в грубозернистых грунтах близка к окисляемости придонной воды; в илистых осадках окисляемость увеличивается в 3-8 раз по сравнению с придонной водой. На основании наших исследований грунтовых растворов Азовского моря и Таганрогского залива установлено, что содержание биогенных элементов в грунтовом растворе обусловлено механическим составом осадков, глубиной залегания осадков, речным стоком и различной продуктивностью фитопланктона в разные сезоны и годы. Изучение грунтовых растворов показало их роль как промежуточной инстанции передачи биогенных элементов из грунта в воду.

Горшкова, Т.И. Химический состав грунтовых растворов Азовского моря и Таганрогского залива [Электронный ресурс] / Горшкова, Т.И. // Реконструкция рыбного хозяйства Азовского моря: Труды ВНИРО. - М.: Издательство "Пищепромиздат", 1955, - Т. 31. - Вып. 1. - С. 123-144 (392 с.) : Изд-во "Пищепромиздат", 1955

4.

Горшкова, Т.И. Химический состав грунтовых растворов Азовского моря и Таганрогского залива [Электронный ресурс] / Горшкова, Т.И. // Реконструкция рыбного хозяйства Азовского моря: Труды ВНИРО. - М.: Издательство "Пищепромиздат", 1955, - Т. 31. - Вып. 1. - С. 123-144 (392 с.) : Изд-во "Пищепромиздат", 1955


Article
Г 70

Горшкова, Т.И.
    Химический состав грунтовых растворов Азовского моря и Таганрогского залива / Горшкова, Т.И. // Реконструкция рыбного хозяйства Азовского моря: Труды ВНИРО. - М.: Издательство "Пищепромиздат", 1955, - Т. 31. - Вып. 1. - С. 123-144 (392 с.). - 1955

~РУБ Article

Рубрики: Азовское море

   Каспийское море


   Химия


   Грунты


   Химия


   Таганрогский залив


Аннотация: Грунтовые растворы содержат гораздо больше биогенных элементов, чем придонная вода. Изучение грунтового раствора позволяет вскрыть историю моря (например, постепенное осолонение Азовского моря за последнее столетие). Влажность грунтов Азовского моря является наибольшей в мягких осадках, причем толщина верхнего, более жидкого, слоя меняется в зависимости от ветрового режима. Соленость грунтового раствора верхнего слоя осадков изменяется в зависимости от изменения солености придонной воды, что сильнее всего проявляется во время таяния льда, во время паводков и при сгонно-нагонных ветрах. По изменению солености грунтовых растворов вглубь осадков можно заключить, что за последнее столетие происходит осолонение Азовского моря и Таганрогского залива. рН грунтового раствора при штормовой погоде достигает высоких значений, при штилевой погоде и при малых количествах кислорода резко падает. Количество фосфатов в грунтовом растворе верхнего слоя резко меняется в различные сезоны: весной количество минерального фосфора доходит до 0, в силу того, что запасы фосфатов прошлого лета во время циркуляции вод успели уже в значительной части перейти в толщу воды. В приустьевых пространствах количество фосфора грунтового раствора зависит от твердого и жидкого речного стока. Количество фосфора в грунтовом растворе нижних слоев осадков постепенно увеличивается за счет меньшей пористости осадков и накопления продуктов минерализации органического вещества. Сезонные изменения кремния проявляются значительно слабее, чем для фосфора, вследствие того, что силикатный материал осадков сам является причиной накопления кремния в грунтовом растворе. Регенерация минеральных азотистых соединений в грунтовых растворах доходит только до стадии аммиака, так как восстановительная среда препятствует нитрификации, поэтому нитриты и нитраты обнаружены очень редко и в очень незначительных количествах. Щелочность грунтовых растворов осадков Таганрогского залива увеличивается от кутовой части залива к Азовскому морю в связи с увеличением фракции 0,01 мм. Окисляемость грунтовых растворов верхнего окисленного слоя осадков в грубозернистых грунтах близка к окисляемости придонной воды; в илистых осадках окисляемость увеличивается в 3-8 раз по сравнению с придонной водой. На основании наших исследований грунтовых растворов Азовского моря и Таганрогского залива установлено, что содержание биогенных элементов в грунтовом растворе обусловлено механическим составом осадков, глубиной залегания осадков, речным стоком и различной продуктивностью фитопланктона в разные сезоны и годы. Изучение грунтовых растворов показало их роль как промежуточной инстанции передачи биогенных элементов из грунта в воду.

Article
В 48

Винецкая, Н.И.
    Влияние "зеленого удобрения" на продукцию органического вещества и гидрохимический режим рыбоводного хозяйства "Ямат" / Винецкая, Н.И. // Разведение промысловых рыб: Труды ВНИРО. - М.: Издательство "Пищепромиздат", 1956, - Т. 32. - С. 29-53 (292 с.). - 1956

~РУБ Article

Рубрики: Гидрохимия

   Органика


   Растительность


   Удобрение


   Компост


   Рыбохозяйство


Аннотация: В 1952 г. в нерестово-вырастном хозяйстве "Ямат" был применен новый вид зеленого удобрения - рогоз. При применении рогоза и тростника в качестве удобрения обнаруживаются различия в характере распада этих растений и влиянии их на окружающую зону. У кромки собранного в кучи скошенного рогоза интенсивность фотосинтеза значительно повышается, тогда как у кромки компостированного тростника и в 3 м от нее разложение органического вещества преобладает на его синтезом. В зарослях рогоза при фотосинтезе возникает недостаток в фосфатах, на участках, удобренных рогозом, наблюдается непрерывное нарастание концентраций фосфатов и соединений азота благодаря постоянному пополнению из кучи компостированной растительности. При применении тростника в качестве удобрения в окружающий трехметровой зоне создаются концентрации соединений азота и фосфора более высокие, чем при компостировании рогоза. Окисляемость воды при удобрении тростниковыми кучами почти в два раза выше, чем при удобрении рогозом, так как при гниении тростника в воду переходит больше органического вещества. Бурное разложение тростника в первый период компостирования приводит к значительному увеличению окисляемости вод и резкому ухудшению кислородного режима в окружающей трехметровой зоне. Скорость распада тростника в три раза больше скорости распада рогоза, и характер распада несколько иной. Большое влияние на кислородный режим водоема оказывает грунт, так как на окислительные процессы в нем расходуется большое количество кислорода. При неправильном способе внесения зеленого удобрения дефицит кислорода может привести к серьезным и трудно устранимым заморным явлениям на большой площади водоема. Так как вблизи куч компостированного тростника фотосинтез планктона угнетен из-за наличия в воде большого количества органического вещества вследствие непрерывного поступления из кучи продуктов распада, то удобрение тростником главным образом имеет значение для обогащения биогенными элементами других участков водоема. Исходя из особенностей тростника и рогоза как удобрений, надо учесть, что если желательно постепенно в течение длительного периода обогащать водоем питательными солями, то следует применять рогоз, если же необходимо в короткий срок обогатить водную толщу, то лучше применять тростник.

Винецкая, Н.И. Влияние "зеленого удобрения" на продукцию органического вещества и гидрохимический режим рыбоводного хозяйства "Ямат" [Электронный ресурс] / Винецкая, Н.И. // Разведение промысловых рыб: Труды ВНИРО. - М.: Издательство "Пищепромиздат", 1956, - Т. 32. - С. 29-53 (292 с.) : Изд-во "Пищепромиздат", 1956

5.

Винецкая, Н.И. Влияние "зеленого удобрения" на продукцию органического вещества и гидрохимический режим рыбоводного хозяйства "Ямат" [Электронный ресурс] / Винецкая, Н.И. // Разведение промысловых рыб: Труды ВНИРО. - М.: Издательство "Пищепромиздат", 1956, - Т. 32. - С. 29-53 (292 с.) : Изд-во "Пищепромиздат", 1956


Article
В 48

Винецкая, Н.И.
    Влияние "зеленого удобрения" на продукцию органического вещества и гидрохимический режим рыбоводного хозяйства "Ямат" / Винецкая, Н.И. // Разведение промысловых рыб: Труды ВНИРО. - М.: Издательство "Пищепромиздат", 1956, - Т. 32. - С. 29-53 (292 с.). - 1956

~РУБ Article

Рубрики: Гидрохимия

   Органика


   Растительность


   Удобрение


   Компост


   Рыбохозяйство


Аннотация: В 1952 г. в нерестово-вырастном хозяйстве "Ямат" был применен новый вид зеленого удобрения - рогоз. При применении рогоза и тростника в качестве удобрения обнаруживаются различия в характере распада этих растений и влиянии их на окружающую зону. У кромки собранного в кучи скошенного рогоза интенсивность фотосинтеза значительно повышается, тогда как у кромки компостированного тростника и в 3 м от нее разложение органического вещества преобладает на его синтезом. В зарослях рогоза при фотосинтезе возникает недостаток в фосфатах, на участках, удобренных рогозом, наблюдается непрерывное нарастание концентраций фосфатов и соединений азота благодаря постоянному пополнению из кучи компостированной растительности. При применении тростника в качестве удобрения в окружающий трехметровой зоне создаются концентрации соединений азота и фосфора более высокие, чем при компостировании рогоза. Окисляемость воды при удобрении тростниковыми кучами почти в два раза выше, чем при удобрении рогозом, так как при гниении тростника в воду переходит больше органического вещества. Бурное разложение тростника в первый период компостирования приводит к значительному увеличению окисляемости вод и резкому ухудшению кислородного режима в окружающей трехметровой зоне. Скорость распада тростника в три раза больше скорости распада рогоза, и характер распада несколько иной. Большое влияние на кислородный режим водоема оказывает грунт, так как на окислительные процессы в нем расходуется большое количество кислорода. При неправильном способе внесения зеленого удобрения дефицит кислорода может привести к серьезным и трудно устранимым заморным явлениям на большой площади водоема. Так как вблизи куч компостированного тростника фотосинтез планктона угнетен из-за наличия в воде большого количества органического вещества вследствие непрерывного поступления из кучи продуктов распада, то удобрение тростником главным образом имеет значение для обогащения биогенными элементами других участков водоема. Исходя из особенностей тростника и рогоза как удобрений, надо учесть, что если желательно постепенно в течение длительного периода обогащать водоем питательными солями, то следует применять рогоз, если же необходимо в короткий срок обогатить водную толщу, то лучше применять тростник.

Article
П 27

Переплетчик, Р.Р.
    Применение антиокислителей для сохранения качества трескового жира / Переплетчик, Р.Р., Кордубан, Т.А. // Технология жиров и кормовых продуктов: Труды ВНИРО. - М.: Издательство "Пищевая промышленность", 1967, - Т. 63. - С. 50-68 (171 с.). - 1967

~РУБ Article

Рубрики: Треска

   Жир


   Антиокислители


   Качество


   Химия


   Расчеты


Аннотация: Подтверждена легкая окисляемость трескового жира, что обусловливает необходимость изыскания средств для предотвращения или торможения этого процесса. Наиболее активным из проверенных антиокислителей (ВНТ, ВНА, тиоксан, пропилгаллат) применительно к тресковому жиру оказался ВНТ в концентрации 0,015-0,02%. В жире, вытопленном с применением ВНТ, находилось несколько меньше продуктов окисления, чем в жире, вытопленном без антиокислителя. Прибавление к весу жира атлантической трески 0,002% ВНТ удлиняет срок его хранения без явных признаков окисления до 3-4 месяцев. Отдельные показатели окислительной порчи трескового жира без их сопоставления недостаточно четко характеризуют степень его окисления. По данным лабораторных опытов, гракса с содержанием 45-60% воды и консервированная 8% поваренной соли хорошо сохраняется в течение месяца при температуре около 20 гр. С.

Доп.точки доступа:
Кордубан, Т.А.

Переплетчик, Р.Р. Применение антиокислителей для сохранения качества трескового жира [Электронный ресурс] / Переплетчик, Р.Р., Кордубан, Т.А. // Технология жиров и кормовых продуктов: Труды ВНИРО. - М.: Издательство "Пищевая промышленность", 1967, - Т. 63. - С. 50-68 (171 с.) : Изд-во "Пищевая промышленность", 1967

6.

Переплетчик, Р.Р. Применение антиокислителей для сохранения качества трескового жира [Электронный ресурс] / Переплетчик, Р.Р., Кордубан, Т.А. // Технология жиров и кормовых продуктов: Труды ВНИРО. - М.: Издательство "Пищевая промышленность", 1967, - Т. 63. - С. 50-68 (171 с.) : Изд-во "Пищевая промышленность", 1967


Article
П 27

Переплетчик, Р.Р.
    Применение антиокислителей для сохранения качества трескового жира / Переплетчик, Р.Р., Кордубан, Т.А. // Технология жиров и кормовых продуктов: Труды ВНИРО. - М.: Издательство "Пищевая промышленность", 1967, - Т. 63. - С. 50-68 (171 с.). - 1967

~РУБ Article

Рубрики: Треска

   Жир


   Антиокислители


   Качество


   Химия


   Расчеты


Аннотация: Подтверждена легкая окисляемость трескового жира, что обусловливает необходимость изыскания средств для предотвращения или торможения этого процесса. Наиболее активным из проверенных антиокислителей (ВНТ, ВНА, тиоксан, пропилгаллат) применительно к тресковому жиру оказался ВНТ в концентрации 0,015-0,02%. В жире, вытопленном с применением ВНТ, находилось несколько меньше продуктов окисления, чем в жире, вытопленном без антиокислителя. Прибавление к весу жира атлантической трески 0,002% ВНТ удлиняет срок его хранения без явных признаков окисления до 3-4 месяцев. Отдельные показатели окислительной порчи трескового жира без их сопоставления недостаточно четко характеризуют степень его окисления. По данным лабораторных опытов, гракса с содержанием 45-60% воды и консервированная 8% поваренной соли хорошо сохраняется в течение месяца при температуре около 20 гр. С.

Доп.точки доступа:
Кордубан, Т.А.

Article
А 91

Астафурова, А.А.
    Гидрохимический режим и удобрение осетровых прудов. / Астафурова, А.А. // Заводское воспроизводство осетровых рыб. - М. : Изд-во ВНИРО, 1973, - с. 45 - 50. - (Труды ВНИРО, т. 92, Вып.1). - 1973

~РУБ Article

Рубрики: Гидрохимия

   Рыбоводство


   Осетр


   Пруды


   Удобрение водоемов


   Гидробиология


Аннотация: С целью выяснения норм и методов удобрения прудов при повторном их использовании в течении одного сезона в статье дан анализ химического состава воды за 1965-1969 гг. В различно удобряемых и контрольных водоемах исследовали содержание растворенного в воде кислорода, свободной, моно- и бикарбонатной углекислоты, активную реакцию и температуру воды, окисляемость, содержание минерального фосфора и азота.

Астафурова, А.А. Гидрохимический режим и удобрение осетровых прудов. [Электронный ресурс] / Астафурова, А.А. // Заводское воспроизводство осетровых рыб. - М. : Изд-во ВНИРО, 1973, - с. 45 - 50. - (Труды ВНИРО, т. 92, Вып.1). : Изд-во ВНИРО., 1973

7.

Астафурова, А.А. Гидрохимический режим и удобрение осетровых прудов. [Электронный ресурс] / Астафурова, А.А. // Заводское воспроизводство осетровых рыб. - М. : Изд-во ВНИРО, 1973, - с. 45 - 50. - (Труды ВНИРО, т. 92, Вып.1). : Изд-во ВНИРО., 1973


Article
А 91

Астафурова, А.А.
    Гидрохимический режим и удобрение осетровых прудов. / Астафурова, А.А. // Заводское воспроизводство осетровых рыб. - М. : Изд-во ВНИРО, 1973, - с. 45 - 50. - (Труды ВНИРО, т. 92, Вып.1). - 1973

~РУБ Article

Рубрики: Гидрохимия

   Рыбоводство


   Осетр


   Пруды


   Удобрение водоемов


   Гидробиология


Аннотация: С целью выяснения норм и методов удобрения прудов при повторном их использовании в течении одного сезона в статье дан анализ химического состава воды за 1965-1969 гг. В различно удобряемых и контрольных водоемах исследовали содержание растворенного в воде кислорода, свободной, моно- и бикарбонатной углекислоты, активную реакцию и температуру воды, окисляемость, содержание минерального фосфора и азота.

Страница 1, Результатов: 7

 

Все поступления за 
Или выберите интересующий месяц